Indian Ocean temperature anomalies predict long-term global dengue trends

Author:

Chen Yuyang12ORCID,Xu Yiting3ORCID,Wang Lin4ORCID,Liang Yilin1ORCID,Li Naizhe3ORCID,Lourenço José5ORCID,Yang Yun1ORCID,Lin Qiushi1,Wang Ligui6,Zhao He7ORCID,Cazelles Bernard89ORCID,Song Hongbin6,Liu Ziyan1ORCID,Wang Zengmiao1,Brady Oliver J.1011ORCID,Cauchemez Simon12ORCID,Tian Huaiyu1ORCID

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China.

2. Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, China.

3. School of National Safety and Emergency Management, Beijing Normal University, Zhuhai, China.

4. Department of Genetics, University of Cambridge, Cambridge, UK.

5. Católica Biomedical Research Center, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal.

6. Center of Disease Control and Prevention, PLA, Beijing, China.

7. CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing, China.

8. Institut de Biologie de l’École Normale Supérieure UMR 8197, Eco-Evolutionary Mathematics, École Normale Supérieure, Paris, France.

9. Unité Mixte Internationnale 209, Mathematical and Computational Modeling of Complex Systems, Sorbonne Université, Paris, France.

10. Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.

11. Department of Infectious Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.

12. Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, Paris, France.

Abstract

Despite identifying El Niño events as a factor in dengue dynamics, predicting the oscillation of global dengue epidemics remains challenging. Here, we investigate climate indicators and worldwide dengue incidence from 1990 to 2019 using climate-driven mechanistic models. We identify a distinct indicator, the Indian Ocean basin-wide (IOBW) index, as representing the regional average of sea surface temperature anomalies in the tropical Indian Ocean. IOBW is closely associated with dengue epidemics for both the Northern and Southern hemispheres. The ability of IOBW to predict dengue incidence likely arises as a result of its effect on local temperature anomalies through teleconnections. These findings indicate that the IOBW index can potentially enhance the lead time for dengue forecasts, leading to better-planned and more impactful outbreak responses.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3