A synthetic synaptic organizer protein restores glutamatergic neuronal circuits

Author:

Suzuki Kunimichi1ORCID,Elegheert Jonathan2,Song Inseon3ORCID,Sasakura Hiroyuki4ORCID,Senkov Oleg3ORCID,Matsuda Keiko1ORCID,Kakegawa Wataru1ORCID,Clayton Amber J.2ORCID,Chang Veronica T.25ORCID,Ferrer-Ferrer Maura3,Miura Eriko1,Kaushik Rahul36ORCID,Ikeno Masashi4ORCID,Morioka Yuki4,Takeuchi Yuka4ORCID,Shimada Tatsuya1ORCID,Otsuka Shintaro1,Stoyanov Stoyan3ORCID,Watanabe Masahiko7ORCID,Takeuchi Kosei4ORCID,Dityatev Alexander368ORCID,Aricescu A. Radu25ORCID,Yuzaki Michisuke1ORCID

Affiliation:

1. Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.

2. Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK.

3. Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.

4. Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan.

5. Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.

6. Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany.

7. Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.

8. Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.

Abstract

Synthetic excitatory synaptic organizer The human brain contains trillions of synapses within a vast network of neurons. Synapse remodeling is essential to ensure the efficient reception and integration of external stimuli and to store and retrieve information. Building and remodeling of synapses occurs throughout life under the control of synaptic organizer proteins. Errors in this process can lead to neuropsychiatric or neurological disorders. Suzuki et al. combined structural elements of natural synaptic organizers to develop an artificial version called CPTX, which has different binding properties (see the Perspective by Salinas). CPTX could act as a molecular bridge to reconnect neurons and restore excitatory synaptic function in animal models of cerebellar ataxia, familial Alzheimer's disease, and spinal cord injury. The findings illustrate how structure-guided approaches can help to repair neuronal circuits. Science , this issue p. eabb4853 ; see also p. 1052

Funder

Takeda Science Foundation

Japan Agency for Medical Research and Development

Medical Research Council

European Research Council

Human Frontier Science Program

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Bundesministerium für Bildung und Forschung

Daiichi Sankyo Foundation of Life Science

Astellas Foundation for Research on Metabolic Disorders

Keio University Grant-in-Aid for Encouragement of Young Medical Scientists

European Union 7th Framework Programme Initial Training Network

Keio Association Grant-in-Aid

Marie-Curie Actions postdoctoral fellowship

University of Bordeaux Initiative of Excellence (IdEx) fellowship

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3