WS 2 ribbon arrays with defined chirality and coherent polarity

Author:

Xue Guodong12ORCID,Zhou Ziqi13ORCID,Guo Quanlin14ORCID,Zuo Yonggang5ORCID,Wei Wenya6ORCID,Yang Jiashu7ORCID,Yin Peng2,Zhang Shuai8ORCID,Zhong Ding2ORCID,You Yilong1ORCID,Sui Xin9ORCID,Liu Chang9ORCID,Wu Muhong9ORCID,Hong Hao1ORCID,Wang Zhu-Jun10ORCID,Gao Peng9ORCID,Li Qunyang8ORCID,Zhang Libo5ORCID,Yu Dapeng11,Ding Feng7ORCID,Wei Zhongming3ORCID,Liu Can2ORCID,Liu Kaihui1912ORCID

Affiliation:

1. State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China.

2. Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China.

3. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.

4. Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.

5. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China.

6. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China.

7. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

8. Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.

9. International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.

10. School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.

11. International Quantum Acadamy, Shenzhen, China.

12. Songshan Lake Materials Laboratory, Dongguan, China.

Abstract

One-dimensional transition metal dichalcogenides exhibiting an enhanced bulk photovoltaic effect have the potential to exceed the Shockley–Queisser limit efficiency in solar energy harvest within p - n junction architectures. However, the collective output of these prototype devices remains a challenge. We report on the synthesis of single-crystalline WS 2 ribbon arrays with defined chirality and coherent polarity through an atomic manufacturing strategy. The chirality of WS 2 ribbon was defined by substrate couplings into tunable armchair, zigzag, and chiral species, and the polarity direction was determined by the ribbon-precursor interfacial energy along a coherent direction. A single armchair ribbon showed strong bulk photovoltaic effect and the further integration of ~1000 aligned ribbons with coherent polarity enabled upscaling of the photocurrent.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3