ATM Activation by Oxidative Stress

Author:

Guo Zhi1,Kozlov Sergei2,Lavin Martin F.2,Person Maria D.3,Paull Tanya T.1

Affiliation:

1. Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology (ICMB), University of Texas at Austin, Austin, TX 78712, USA.

2. Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, and School of Medicine, University of Queensland, Brisbane Q4006, Australia.

3. ICMB Analytical Instrumentation Facility Core, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA.

Abstract

Stress, DNA Damage, and ATM The protein kinase ATM (ataxia-telangiectasia mutated) is a key component of the signaling pathway through which cells are protected from DNA damage. ATM becomes activated within a protein complex at sites of double-stranded breaks in DNA. ATM is also activated in response to increased production of reactive oxygen species (ROS). Such activation was thought to reflect DNA damage caused by ROS, but Guo et al. (p. 517 ) showed that ATM was in fact directly activated by ROS. A cysteine residue in ATM contributes to the formation of disulfide-linked dimers of activated ATM on exposure to ROS in vitro. Experiments using mutated forms of the enzyme suggested that two distinct mechanisms regulated ATM activity.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3