ATP-dependent force generation and membrane scission by ESCRT-III and Vps4

Author:

Schöneberg Johannes123ORCID,Pavlin Mark Remec24,Yan Shannon12ORCID,Righini Maurizio5ORCID,Lee Il-Hyung12ORCID,Carlson Lars-Anders12,Bahrami Amir Houshang3ORCID,Goldman Daniel H.265,Ren Xuefeng12ORCID,Hummer Gerhard37ORCID,Bustamante Carlos12465ORCID,Hurley James H.1248ORCID

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

2. California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.

3. Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.

4. Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.

5. Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.

6. Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

7. Institute of Biophysics, Goethe University, Frankfurt/M, Germany.

8. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Membrane scission by ESCRTs The ESCRT protein complexes are essential for cell division, the release of HIV from infected cells via budding, and other cell processes involving the scission of narrow membrane necks from their inner surface. The unusual inside-directed membrane cutting has made it hard to recapitulate this reaction and understand its mechanism. Schöneberg et al. encapsulated ESCRTs inside lipid vesicles and used optical tweezers to pull out membrane nanotubes. In the presence of adenosine triphosphate, clusters of ESCRTs generated force and constricted the nanotube, eventually severing it. This approach provides a window into the molecular mechanisms involved in the activities of ESCRTs. Science , this issue p. 1423

Funder

National Science Foundation

Howard Hughes Medical Institute

National Institute of Allergy and Infectious Diseases

Max Planck Society

Marie Skłodowska- Curie Fellowship

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3