Affiliation:
1. McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Abstract
Young animals engage in variable exploratory behaviors essential for the development of neural circuitry and adult motor control, yet the neural basis of these behaviors is largely unknown. Juvenile songbirds produce subsong—a succession of primitive vocalizations akin to human babbling. We found that subsong production in zebra finches does not require HVC (high vocal center), a key premotor area for singing in adult birds, but does require LMAN (lateral magnocellular nucleus of the nidopallium), a forebrain nucleus involved in learning but not in adult singing. During babbling, neurons in LMAN exhibited premotor correlations to vocal output on a fast time scale. Thus, juvenile singing is driven by a circuit distinct from that which produces the adult behavior—a separation possibly general to other developing motor systems.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
304 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献