Success and Virulence in Toxoplasma as the Result of Sexual Recombination Between Two Distinct Ancestries

Author:

Grigg Michael E.1,Bonnefoy Serge1,Hehl Adrian B.1,Suzuki Yasuhiro23,Boothroyd John C.1

Affiliation:

1. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305–5124, USA.

2. Department of Immunology and Infectious Diseases, Research Institute, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA.

3. Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

Abstract

Toxoplasma gondii is a common human pathogen causing serious, even fatal, disease in the developing fetus and in immunocompromised patients. Despite its ability to reproduce sexually and its broad geographic and host range, Toxoplasma has a clonal population structure comprised principally of three lines. We have analyzed 15 polymorphic loci in the archetypal type I, II, and III strains and found that polymorphism was limited to, at most, two rather than three allelic classes and no polymorphism was detected between alleles in strains of a given type. Multilocus analysis of 10 nonarchetypal isolates likewise clustered the vast majority of alleles into the same two distinct ancestries. These data strongly suggest that the currently predominant genotypes exist as a pandemic outbreak from a genetic mixing of two discrete ancestral lines. To determine if such mixing could lead to the extreme virulence observed for some strains, we examined the F 1 progeny of a cross between a type II and III strain, both of which are relatively avirulent in mice. Among the progeny were recombinants that were at least 3 logs more virulent than either parent. Thus, sexual recombination, by combining polymorphisms in two distinct and competing clonal lines, can be a powerful force driving the natural evolution of virulence in this highly successful pathogen.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 270 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3