Diamond-lattice photonic crystals assembled from DNA origami

Author:

Posnjak Gregor1ORCID,Yin Xin1ORCID,Butler Paul23ORCID,Bienek Oliver23ORCID,Dass Mihir1ORCID,Lee Seungwoo4567ORCID,Sharp Ian D.23ORCID,Liedl Tim1ORCID

Affiliation:

1. Faculty of Physics and CeNS, Ludwig-Maximilian-University Munich, München, 80539 Bayern, Germany.

2. Walter Schottky Institute, Technical University of Munich, Garching bei München, 85748 Bayern, Germany.

3. Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching bei München, 85748 Bayern, Germany.

4. Department of Integrative Energy Engineering (College of Engineering), KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.

5. Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea.

6. KU Photonics Center, Korea University, Seoul 02841, Republic of Korea.

7. Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

Abstract

Colloidal self-assembly allows rational design of structures on the micrometer and submicrometer scale. One architecture that can generate complete three-dimensional photonic bandgaps is the diamond cubic lattice, which has remained difficult to realize at length scales comparable with the wavelength of visible or ultraviolet light. In this work, we demonstrate three-dimensional photonic crystals self-assembled from DNA origami that act as precisely programmable patchy colloids. Our DNA-based nanoscale tetrapods crystallize into a rod-connected diamond cubic lattice with a periodicity of 170 nanometers. This structure serves as a scaffold for atomic-layer deposition of high–refractive index materials such as titanium dioxide, yielding a tunable photonic bandgap in the near-ultraviolet.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3