Phase-Coherent Transport in Graphene Quantum Billiards

Author:

Miao F.1,Wijeratne S.1,Zhang Y.1,Coskun U. C.1,Bao W.1,Lau C. N.1

Affiliation:

1. Department of Physics and Astronomy, University of California at Riverside, Riverside, CA 92521, USA.

Abstract

As an emergent electronic material and model system for condensed-matter physics, graphene and its electrical transport properties have become a subject of intense focus. By performing low-temperature transport spectroscopy on single-layer and bilayer graphene, we observe ballistic propagation and quantum interference of multiply reflected waves of charges from normal electrodes and multiple Andreev reflections from superconducting electrodes, thereby realizing quantum billiards in which scattering only occurs at the boundaries. In contrast to the conductivity of conventional two-dimensional materials, graphene's conductivity at the Dirac point is geometry-dependent because of conduction via evanescent modes, approaching the theoretical value 4e 2 /πh (where e is the electron charge and h is Planck's constant) only for short and wide devices. These distinctive transport properties have important implications for understanding chaotic quantum systems and implementing nanoelectronic devices, such as ballistic transistors.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 625 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3