Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene

Author:

Studt Felix123,Abild-Pedersen Frank123,Bligaard Thomas123,Sørensen Rasmus Z.123,Christensen Claus H.123,Nørskov Jens K.123

Affiliation:

1. Center for Atomic-scale Materials Design, Department of Physics, Building 311, Technical University of Denmark, DK-2800 Lyngby, Denmark.

2. Computational Materials Design ApS, Fysikvej, Building 307, DK-2800 Lyngby, Denmark.

3. Center for Sustainable and Green Chemistry, Department of Chemistry, Building 206, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Abstract

The removal of trace acetylene from ethylene is performed industrially by palladium hydrogenation catalysts (often modified with silver) that avoid the hydrogenation of ethylene to ethane. In an effort to identify catalysts based on less expensive and more available metals, density functional calculations were performed that identified relations in heats of adsorption of hydrocarbon molecules and fragments on metal surfaces. This analysis not only verified the facility of known catalysts but identified nickel-zinc alloys as alternatives. Experimental studies demonstrated that these alloys dispersed on an oxide support were selective for acetylene hydrogenation at low pressures.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3