Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor

Author:

Wandel S.1ORCID,Boschini F.234ORCID,da Silva Neto E. H.567ORCID,Shen L.18ORCID,Na M. X.23ORCID,Zohar S.1,Wang Y.1ORCID,Welch S. B.1ORCID,Seaberg M. H.1ORCID,Koralek J. D.1ORCID,Dakovski G. L.1,Hettel W.1,Lin M.-F.1ORCID,Moeller S. P.1ORCID,Schlotter W. F.1ORCID,Reid A. H.1ORCID,Minitti M. P.1ORCID,Boyle T.567ORCID,He F.9ORCID,Sutarto R.9ORCID,Liang R.23,Bonn D.23ORCID,Hardy W.23ORCID,Kaindl R. A.1011ORCID,Hawthorn D. G.12ORCID,Lee J.-S.13ORCID,Kemper A. F.14ORCID,Damascelli A.23ORCID,Giannetti C.15ORCID,Turner J. J.18ORCID,Coslovich G.1ORCID

Affiliation:

1. Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

2. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.

3. Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

4. Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada.

5. Department of Physics, Yale University, New Haven, CT 06520, USA.

6. Energy Sciences Institute, Yale University, New Haven, CT 06516, USA.

7. Department of Physics, University of California, Davis, CA 95616, USA.

8. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.

9. Canadian Light Source, Saskatoon, SK S7N 2V3, Canada.

10. Department of Physics, Arizona State University, Tempe, AZ 85287, USA.

11. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

12. Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

13. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

14. Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.

15. Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia, BS I-25121, Italy.

Abstract

Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa 2 Cu 3 O 6+ x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3