The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia

Author:

Rule Susan12,Brook Barry W.3,Haberle Simon G.1,Turney Chris S. M.4,Kershaw A. Peter5,Johnson Christopher N.6

Affiliation:

1. School of Culture, History and Language, The Australian National University, Canberra ACT 0200, Australia.

2. School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

3. The Environment Institute and School of Earth and Environmental Science, University of Adelaide, Adelaide SA 5005, Australia.

4. Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.

5. School of Geography and Environmental Science, Monash University, Clayton Vic 3168, Australia.

6. School of Zoology University of Tasmania, Hobart Tasmania 7001, Australia.

Abstract

Human Impact? Following the arrival of humans in Australia 40- to 50,000 years ago, many species of large vertebrates rapidly became extinct. By analyzing sediment cores from a site in northeastern Australia, Rule et al. (p. 1483 ; see the Perspective by McGlone ) show that the extinction of the Australian megafauna caused important ecosystem shifts. Prominent among these were a shift from rainforest vegetation to sclerophyllous vegetation and a sustained increase in the incidence of fire. The cores also provide evidence of the cause of megafaunal extinction in Australia, ruling out climate and anthropogenic fire as possible causes while confirming that the extinctions closely followed human arrival. These findings show how landscapes sometimes have been fundamentally changed by the indirect effects of early humans—which underscores the impact that even prehistoric human societies had on natural systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 234 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3