Insulator-metal transition in dense fluid deuterium

Author:

Celliers Peter M.1ORCID,Millot Marius1ORCID,Brygoo Stephanie2,McWilliams R. Stewart3,Fratanduono Dayne E.1ORCID,Rygg J. Ryan14ORCID,Goncharov Alexander F.5ORCID,Loubeyre Paul2,Eggert Jon H.1ORCID,Peterson J. Luc1ORCID,Meezan Nathan B.1,Le Pape Sebastien1,Collins Gilbert W.14ORCID,Jeanloz Raymond6ORCID,Hemley Russell J.7

Affiliation:

1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA.

2. CEA, DAM, DIF, F-91297 Arpajon, France.

3. School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, UK.

4. Department of Mechanical Engineering, Physics and Astronomy and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.

5. Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA.

6. Department of Earth and Planetary Science and Department of Astronomy, University of California, Berkeley, CA 94720, USA.

7. Institute of Materials Science and Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA.

Abstract

Laser-shocking deuterium into metal The conditions in which hydrogen disassociates and becomes an atomic metal occur in high-energy-density environments, such as the interiors of giant planets and nuclear explosions. Celliers et al. trained 168 lasers on deuterium samples at the National Ignition Facility to measure the pressure and temperature conditions of the hydrogen transition. Careful optical measurements led to the addition of four new points on the phase diagram, consistent with static estimates and theoretical calculations. Science , this issue p. 677

Funder

U.S. Department of Energy

Army Research Office

National Natural Science Foundation of China

Chinese Academy of Sciences

Engineering and Physical Sciences Research Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3