An atomic-scale multi-qubit platform

Author:

Wang Yu12ORCID,Chen Yi1234ORCID,Bui Hong T.15ORCID,Wolf Christoph12ORCID,Haze Masahiro16ORCID,Mier Cristina17ORCID,Kim Jinkyung15,Choi Deung-Jang1789ORCID,Lutz Christopher P.10ORCID,Bae Yujeong15ORCID,Phark Soo-hyon12ORCID,Heinrich Andreas J.15ORCID

Affiliation:

1. Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea.

2. Ewha Womans University, Seoul 03760, Korea.

3. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

4. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.

5. Department of Physics, Ewha Womans University, Seoul 03760, Korea.

6. The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan.

7. Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain.

8. Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.

9. Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.

10. IBM Research Division, Almaden Research Center, San Jose, CA 95120, USA.

Abstract

Individual electron spins in solids are promising candidates for quantum science and technology, where bottom-up assembly of a quantum device with atomically precise couplings has long been envisioned. Here, we realized atom-by-atom construction, coherent operations, and readout of coupled electron-spin qubits using a scanning tunneling microscope. To enable the coherent control of “remote” qubits that are outside of the tunnel junction, we complemented each electron spin with a local magnetic field gradient from a nearby single-atom magnet. Readout was achieved by using a sensor qubit in the tunnel junction and implementing pulsed double electron spin resonance. Fast single-, two-, and three-qubit operations were thereby demonstrated in an all-electrical fashion. Our angstrom-scale qubit platform may enable quantum functionalities using electron spin arrays built atom by atom on a surface.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3