Multiple Exciton Collection in a Sensitized Photovoltaic System

Author:

Sambur Justin B.12,Novet Thomas3,Parkinson B. A.1

Affiliation:

1. Department of Chemistry and School of Energy Resources, University of Wyoming, Laramie, WY 80271, USA.

2. Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.

3. Voxtel Incorporated, Beaverton, OR 97006, USA.

Abstract

Two for One Solar cells often contain materials that absorb a broad spectrum of light above a certain frequency threshold, or band gap. Unfortunately, much of the energy contained in this light is wasted, because any balance exceeding the band gap tends to be dissipated as heat, rather than harnessed into electric current. Recent spectroscopic studies have shown that incident photons with energy several multiples of the band gap can transiently generate more than one current carrier, but the excess carriers tend to collapse before they can be diverted into the circuit. Sambur et al. (p. 63 ) now show that, when light-absorbing lead sulfide nanoparticles are carefully coupled to smoothly polished titanium dioxide crystalline electrodes, such excess carriers can be transferred into the circuit before collapsing.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3