DNA capture by a CRISPR-Cas9–guided adenine base editor

Author:

Lapinaite Audrone1ORCID,Knott Gavin J.12ORCID,Palumbo Cody M.3ORCID,Lin-Shiao Enrique1ORCID,Richter Michelle F.456ORCID,Zhao Kevin T.456ORCID,Beal Peter A.3ORCID,Liu David R.456ORCID,Doudna Jennifer A.178910ORCID

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

2. Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.

3. Department of Chemistry, University of California, Davis, CA 95616, USA.

4. Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.

5. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

6. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.

7. Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.

8. MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

9. Department of Chemistry, University of California, Berkeley, CA 94720, USA.

10. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.

Abstract

Secrets of a fast base editor CRISPR-Cas9 base editors comprise RNA-guided Cas proteins fused to an enzyme that can deaminate a DNA nucleoside. No natural enzyme deaminates adenine in DNA, and so a breakthrough came when a natural transfer RNA deaminase was fused to Cas9 and evolved to give an adenine base editor (ABE) that works on DNA. Further evolution provided the enzyme ABE8e, which catalyzes deamination more than 1000 times faster than early ABEs. Lapinaite et al. now present a 3.2-angstrom resolution structure of ABE8e bound to DNA in which the target adenine is replaced with an analog designed to trap the catalytic conformation. The structure, together with kinetic data comparing ABE8e to earlier ABEs, explains how ABE8e edits DNA bases and could inform future base-editor design. Science , this issue p. 566

Funder

National Science Foundation

National Institutes of Health

Howard Hughes Medical Institute

W.M. Keck Foundation

National Multiple Sclerosis Society

Paul G. Allen Family Foundation

St. Jude Medical Foundation

Bill and Melinda Gates Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3