Electrical and optical control of single spins integrated in scalable semiconductor devices

Author:

Anderson Christopher P.12ORCID,Bourassa Alexandre1ORCID,Miao Kevin C.1ORCID,Wolfowicz Gary1ORCID,Mintun Peter J.1ORCID,Crook Alexander L.12ORCID,Abe Hiroshi3ORCID,Ul Hassan Jawad4ORCID,Son Nguyen T.4ORCID,Ohshima Takeshi3ORCID,Awschalom David D.125ORCID

Affiliation:

1. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.

2. Department of Physics, University of Chicago, Chicago, IL 60637, USA.

3. National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan.

4. Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.

5. Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

Abstract

Divacancies in a diode Solid-state defects hold great promise as the building blocks for quantum computers. Most research has focused on defects in diamond, which are difficult to integrate with existing semiconductor technologies. An alternative two-vacancy neutral defect in silicon carbide (SiC) has a long coherence time but suffers from broad optical linewidths and charge instability. Anderson et al. fabricated these defects in a diode made out of commercially available SiC. Reverse voltage created large electric fields within the diode, tuning the frequencies of the defect's transitions by hundreds of gigahertz. The electric fields also caused charge depletion, leading to a dramatic narrowing of the transitions. The technique should be readily generalizable to other quantum defects. Science , this issue p. 1225

Funder

National Science Foundation

Office of Naval Research

Air Force Office of Scientific Research

Defense Sciences Office, DARPA

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

KAKENHI

Swedish Energy Agency

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3