Realizing private and practical pharmacological collaboration

Author:

Hie Brian1ORCID,Cho Hyunghoon1ORCID,Berger Bonnie12ORCID

Affiliation:

1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

2. Department of Mathematics, MIT, Cambridge, MA 02139, USA.

Abstract

Sharing pharmaceutical research Increased collaboration will enhance our ability to predict new therapeutic drug candidates. Such data sharing is currently limited by concerns about intellectual property and competing commercial interests. Hie et al. introduce an end-to-end pipeline, using modern cryptographic tools, for secure pharmacological collaboration. Multiple entities can thus securely combine their private datasets to collectively obtain more accurate predictions of new drug-target interactions. The computational pipeline is practical, producing results with improved accuracy in a few days over a wide area network on a real dataset with more than a million interactions. Science , this issue p. 347

Funder

National Institutes of Health

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference58 articles.

1. Pharma firms join NIH on drug development;Reardon S.;Nature,2014

2. J. Levy The age of collaboration: why pharma companies now have to work together. Pharmafile (2015); www.pharmafile.com/news/501725/age-collaboration-why-pharma-companies-now-have-work-together.

3. M. Wilhelm Big Pharma Buys Into Crowdsourcing for Drug Discovery. Wired (2017); www.wired.com/story/big-pharma-buys-into-crowdsourcing-for-drug-discovery/.

4. J. Hunter Collaboration for innovation is the new mantra for the pharmaceutical industry. Drug Discovery World (2014); www.ddw-online.com/business/p217613-collaboration-for-innovation-is-the-new-mantra-for-the-pharmaceutical-industry-spring-14.html.

5. “Johnson & Johnson Innovation Announces New Collaborations Advancing Ground-Breaking Biomedical Innovation Around the Globe ” press release; www.jnjinnovation.com/sites/default/files/jji_bio_2017_press_release_06-15-17.pdf.

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3