Determining hot-carrier transport dynamics from terahertz emission

Author:

Taghinejad Mohammad12ORCID,Xia Chenyi2ORCID,Hrton Martin34ORCID,Lee Kyu-Tae5ORCID,Kim Andrew S.5ORCID,Li Qitong1,Guzelturk Burak6ORCID,Kalousek Radek34ORCID,Xu Fenghao1ORCID,Cai Wenshan57ORCID,Lindenberg Aaron M.28ORCID,Brongersma Mark L.1ORCID

Affiliation:

1. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.

2. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

3. Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Czech Republic.

4. Central European Institute of Technology (CEITEC), Brno University of Technology, Czech Republic.

5. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

6. X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.

7. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

8. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

Abstract

Understanding the ultrafast excitation and transport dynamics of plasmon-driven hot carriers is critical to the development of optoelectronics, photochemistry, and solar-energy harvesting. However, the ultrashort time and length scales associated with the behavior of these highly out-of-equilibrium carriers have impaired experimental verification of ab initio quantum theories. Here, we present an approach to studying plasmonic hot-carrier dynamics that analyzes the temporal waveform of coherent terahertz bursts radiated by photo-ejected hot carriers from designer nano-antennas with a broken symmetry. For ballistic carriers ejected from gold antennas, we find an ~11-femtosecond timescale composed of the plasmon lifetime and ballistic transport time. Polarization- and phase-sensitive detection of terahertz fields further grant direct access to their ballistic transport trajectory. Our approach opens explorations of ultrafast carrier dynamics in optically excited nanostructures.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3