Proximate deconfined quantum critical point in SrCu 2 ( BO 3 ) 2

Author:

Cui Yi1ORCID,Liu Lu23ORCID,Lin Huihang1ORCID,Wu Kai-Hsin4ORCID,Hong Wenshan2ORCID,Liu Xuefei1,Li Cong1,Hu Ze1,Xi Ning1,Li Shiliang256ORCID,Yu Rong17ORCID,Sandvik Anders W.24ORCID,Yu Weiqiang17ORCID

Affiliation:

1. Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China.

2. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

3. School of Physics, Beijing Institute of Technology, Beijing 100081, China.

4. Department of Physics, Boston University, Boston, MA 02215, USA.

5. School of Physical Sciences, Graduate University of the Chinese Academy of Sciences, Beijing 100190, China.

6. Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.

7. Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China.

Abstract

The deconfined quantum critical point (DQCP) represents a paradigm shift in quantum matter studies, presenting a “beyond Landau” scenario for order-order transitions. Its experimental realization, however, has remained elusive. Using high-pressure 11 B nuclear magnetic resonance measurements on the quantum magnet SrCu 2 (BO 3 ) 2 , we here demonstrate a magnetic field–induced plaquette singlet to antiferromagnetic transition above 1.8 gigapascals at a notably low temperature, T c ≃ 0.07 kelvin. First-order signatures of the transition weaken with increasing pressure, and we observe quantum critical scaling at the highest pressure, 2.4 gigapascals. Supported by model calculations, we suggest that these observations can be explained by a proximate DQCP inducing critical quantum fluctuations and emergent O(3) symmetry of the order parameters. Our findings offer a concrete experimental platform for investigation of the DQCP.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3