Operating semiconductor quantum processors with hopping spins

Author:

Wang Chien-An1ORCID,John Valentin1ORCID,Tidjani Hanifa1ORCID,Yu Cécile X.1ORCID,Ivlev Alexander S.1ORCID,Déprez Corentin1ORCID,van Riggelen-Doelman Floor1ORCID,Woods Benjamin D.2,Hendrickx Nico W.1ORCID,Lawrie William I. L.1,Stehouwer Lucas E. A.1ORCID,Oosterhout Stefan D.3ORCID,Sammak Amir3,Friesen Mark2ORCID,Scappucci Giordano1ORCID,de Snoo Sander L.1ORCID,Rimbach-Russ Maximilian1ORCID,Borsoi Francesco1ORCID,Veldhorst Menno1ORCID

Affiliation:

1. QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands.

2. Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA.

3. QuTech and Netherlands Organisation for Applied Scientific Research (TNO), 2628 CK Delft, Netherlands.

Abstract

Qubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-talk, and heating. Here, we show that by engineering the hopping of spins between quantum dots with a site-dependent spin quantization axis, quantum control can be established with discrete signals. We demonstrate hopping-based quantum logic and obtain single-qubit gate fidelities of 99.97%, coherent shuttling fidelities of 99.992% per hop, and a two-qubit gate fidelity of 99.3%, corresponding to error rates that have been predicted to allow for quantum error correction. We also show that hopping spins constitute a tuning method by statistically mapping the coherence of a 10–quantum dot system. Our results show that dense quantum dot arrays with sparse occupation could be developed for efficient and high-connectivity qubit registers.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How young is volcanism on the Moon?;Science;2024-09-06

2. A singlet-triplet hole-spin qubit in MOS silicon;Nature Communications;2024-09-03

3. A gate tunable transmon qubit in planar Ge;Nature Communications;2024-07-30

4. BeSnake: A Routing Algorithm for Scalable Spin-Qubit Architectures;IEEE Transactions on Quantum Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3