Disproportionation of (Mg,Fe)SiO 3 perovskite in Earth’s deep lower mantle

Author:

Zhang Li12,Meng Yue3,Yang Wenge14,Wang Lin14,Mao Wendy L.56,Zeng Qiao-Shi5,Jeong Jong Seok7,Wagner Andrew J.7,Mkhoyan K. Andre7,Liu Wenjun8,Xu Ruqing8,Mao Ho-kwang12

Affiliation:

1. Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.

2. Geophysical Laboratory, Carnegie Institution of Washington (CIW), Washington, DC 20015, USA.

3. High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, CIW, Argonne, IL 60439, USA.

4. High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, CIW, Argonne, IL 60439, USA.

5. Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.

6. Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

7. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA.

8. Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.

Abstract

The mineralogical constitution of the Earth’s mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D″ layer contains ferromagnesian silicate [(Mg,Fe)SiO 3 ] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO 3 perovskite phase and an Fe-rich phase with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3