Observation of universal Hall response in strongly interacting Fermions

Author:

Zhou T.-W.12ORCID,Cappellini G.23ORCID,Tusi D.3ORCID,Franchi L.1ORCID,Parravicini J.123ORCID,Repellin C.4ORCID,Greschner S.5ORCID,Inguscio M.236ORCID,Giamarchi T.5ORCID,Filippone M.7ORCID,Catani J.23ORCID,Fallani L.123ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy.

2. Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sezione di Sesto Fiorentino, 50019 Sesto Fiorentino, Italy.

3. European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy.

4. Université Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France.

5. Department of Quantum Matter Physics, University of Geneva, 1211 Geneva, Switzerland.

6. Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy.

7. Université Grenoble Alpes, CEA, IRIG-MEM-L_SIM, 38000 Grenoble, France.

Abstract

The Hall effect, which originates from the motion of charged particles in magnetic fields, has deep consequences for the description of materials, extending far beyond condensed matter. Understanding such an effect in interacting systems represents a fundamental challenge, even for small magnetic fields. In this work, we used an atomic quantum simulator in which we tracked the motion of ultracold fermions in two-leg ribbons threaded by artificial magnetic fields. Through controllable quench dynamics, we measured the Hall response for a range of synthetic tunneling and atomic interaction strengths. We unveil a universal interaction-independent behavior above an interaction threshold, in agreement with theoretical analyses. The ability to reach hard-to-compute regimes demonstrates the power of quantum simulation to describe strongly correlated topological states of matter.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3