Organocatalyzed atom transfer radical polymerization driven by visible light

Author:

Theriot Jordan C.1,Lim Chern-Hooi12,Yang Haishen1,Ryan Matthew D.1,Musgrave Charles B.123,Miyake Garret M.13

Affiliation:

1. Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA.

2. Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.

3. Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA.

Abstract

Precise control from a metal-free catalyst Polymerization can be a rather dangerous free for all, with molecules joining randomly in chains at a chaotic pace. One of modern chemistry's great accomplishments has been the development of methods to assemble polymers in steady, orderly steps. However, order comes at a price, and often it's the need for metal catalysts that are hard to remove from the plastic product. Theriot et al. used theory to guide the design of a metal-free light-activated catalyst that offers precise control in atom transfer radical polymerization, alleviating concerns about residual metal contamination (see the Perspective by Shanmugam and Boyer). Science , this issue p. 1082 ; see also p. 1053

Funder

University of Colorado Boulder

Advanced Research Projects Agency-Energy

NSF

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3