Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor

Author:

Schmitt Simon1ORCID,Gefen Tuvia2ORCID,Stürner Felix M.1ORCID,Unden Thomas1ORCID,Wolff Gerhard1ORCID,Müller Christoph1,Scheuer Jochen13,Naydenov Boris13ORCID,Markham Matthew4,Pezzagna Sebastien5,Meijer Jan5ORCID,Schwarz Ilai36,Plenio Martin36ORCID,Retzker Alex2ORCID,McGuinness Liam P.1ORCID,Jelezko Fedor13ORCID

Affiliation:

1. Institute of Quantum Optics, Ulm University, 89081 Ulm, Germany.

2. Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.

3. Center of Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany.

4. Element Six, Harwell Campus, Fermi Avenue, Didcot OX11 0QR, UK.

5. Felix Bloch Institute for Solid State Physics, Universität Leipzig, 04103 Leipzig, Germany.

6. Institute of Theoretical Physics, Ulm University, 89069 Ulm, Germany.

Abstract

Enhancing quantum sensing The quantum properties of the nitrogen vacancy (NV) defect in diamond can be used as an atomic compass needle that is sensitive to tiny variations in magnetic field. Schmitt et al. and Boss et al. successfully enhanced this sensitivity by several orders of magnitude (see the Perspective by Jordan). They applied a sequence of pulses to the NV center, the timing of which was set by and compared with a highly stable oscillator. This allowed them to measure the frequency of an oscillating magnetic field (megahertz bandwidth) with submillihertz resolution. Such enhanced precision measurement could be applied, for example, to improve nuclear magnetic resonance-based imaging protocols of single molecules. Science , this issue p. 832 , p. 837 ; see also p. 802

Funder

H2020 Future and Emerging Technologies

H2020 Health

Seventh Framework Programme

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 230 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3