Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites

Author:

Veenvliet Jesse V.1ORCID,Bolondi Adriano2ORCID,Kretzmer Helene2ORCID,Haut Leah12,Scholze-Wittler Manuela1,Schifferl Dennis1,Koch Frederic1,Guignard Léo3ORCID,Kumar Abhishek Sampath2,Pustet Milena1,Heimann Simon1ORCID,Buschow René4ORCID,Wittler Lars1,Timmermann Bernd5,Meissner Alexander2678ORCID,Herrmann Bernhard G.19ORCID

Affiliation:

1. Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

2. Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

3. Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 10115 Berlin, Germany.

4. Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

5. Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

6. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.

7. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

8. Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.

9. Institute for Medical Genetics, Charité–University Medicine Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.

Abstract

Trunk formation in a dish Building mammalian embryos from self-organizing stem cells in culture would accelerate the investigation of morphogenetic and differentiation processes that shape the body plan. Veenvliet et al. report a method for generating embryonic trunk-like structures (TLSs) with a neural tube, somites, and gut by embedding mouse embryonic stem cell aggregates in an extracellular matrix surrogate. Live imaging and comparative single-cell transcriptomics indicate that TLS formation is analogous to mouse development. TLSs therefore provide a scalable, tractable, and accessible high-throughput platform for decoding mammalian embryogenesis at a high level of resolution. Science , this issue p. eaba4937

Funder

Max Planck Society

NIH

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 191 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3