Bat and Rat Neurons Differ in Theta-Frequency Resonance Despite Similar Coding of Space

Author:

Heys James G.1,MacLeod Katrina M.2,Moss Cynthia F.3,Hasselmo Michael E.4

Affiliation:

1. Graduate Program for Neuroscience, Center for Memory and Brain, Boston University, 2 Cummington Street, Boston, MA 02215, USA.

2. Department of Biology, University of Maryland, College Park, MD 20742, USA.

3. Department of Psychology, University of Maryland, College Park, MD 20742, USA.

4. Department of Psychology, Center for Memory and Brain, Boston University, 2 Cummington Street, Boston, MA 02215, USA.

Abstract

Bats, Grids, and Oscillations Nearly all animals move around in a three-dimensional (3D) world; however, very little is known about the neural circuitry underlying the representation of 3D space (see the Perspective by Barry and Doeller ). Using whole-cell patch recordings in slices of entorhinal cortex, Heys et al. (p. 363 ) found that bat entorhinal stellate cells must generate grid patterns without theta-frequency oscillatory mechanisms. In another study, Yartsev and Ulanovsky (p. 367 ) used telemetry to record activity from the hippocampus of bats while they were flying around. They found that active pyramidal cells—or place cells—in hippocampal area CA1 fired in positions, depending on where the animals were in the room.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3