Evolution of an MCM Complex in Flies That Promotes Meiotic Crossovers by Blocking BLM Helicase

Author:

Kohl Kathryn P.1,Jones Corbin D.23,Sekelsky Jeff124

Affiliation:

1. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.

2. Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.

3. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA.

4. Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA.

Abstract

Swapping Recombination Proteins Crossing over is a means by which organisms create genetic diversity through the mixing of gene complexes. The primary meiotic crossover pathway in budding yeast, mice, nematodes, and plants requires the Msh4–Msh5 heterodimer, which promotes crossovers by blocking anticrossover activities of the Bloom syndrome helicase. However, some fly species, including members of the genus Drosophila , have lost Msh4–Msh5. Kohl et al. (p. 1363 ) now show that Drosophila have evolved a minichromosome maintenance (MCM)–like protein, dubbed mei-MCM, that performs the same function as Msh4–Msh5. Furthermore, these genes appear to have evolved under positive selection, possibly as a result of their repurposing to this novel function.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3