Maximizing noble metal utilization in solid catalysts by control of nanoparticle location

Author:

Cheng Kang12ORCID,Smulders Luc C. J.1ORCID,van der Wal Lars I.1ORCID,Oenema Jogchum1,Meeldijk Johannes D.13,Visser Nienke L.1ORCID,Sunley Glenn4ORCID,Roberts Tegan4,Xu Zhuoran5ORCID,Doskocil Eric5ORCID,Yoshida Hideto16ORCID,Zheng Yanping2ORCID,Zečević Jovana1ORCID,de Jongh Petra E.1ORCID,de Jong Krijn P.1ORCID

Affiliation:

1. Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, Netherlands.

2. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

3. Electron Microscopy Centre, Utrecht University, 3584 CG Utrecht, Netherlands.

4. Applied Sciences, bp Innovation and Engineering, BP plc, Saltend, Hull HU12 8DS, UK.

5. Applied Sciences, bp Innovation and Engineering, BP plc, Naperville, IL 60563, USA.

6. The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

Abstract

Maximizing the utilization of noble metals is crucial for applications such as catalysis. We found that the minimum loading of platinum for optimal performance in the hydroconversion of n -alkanes for industrially relevant bifunctional catalysts could be reduced by a factor of 10 or more through the rational arranging of functional sites at the nanoscale. Intentionally depositing traces of platinum nanoparticles on the alumina binder or the outer surface of zeolite crystals, instead of inside the zeolite crystals, enhanced isomer selectivity without compromising activity. Separation between platinum and zeolite acid sites preserved the metal and acid functions by limiting micropore blockage by metal clusters and enhancing access to metal sites. Reduced platinum nanoparticles were more active than platinum single atoms strongly bonded to the alumina binder.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3