The geology and geophysics of Kuiper Belt object (486958) Arrokoth

Author:

Spencer J. R.1ORCID,Stern S. A.1ORCID,Moore J. M.2ORCID,Weaver H. A.3ORCID,Singer K. N.1ORCID,Olkin C. B1ORCID,Verbiscer A. J.4ORCID,McKinnon W. B.5ORCID,Parker J. Wm.1ORCID,Beyer R. A.26ORCID,Keane J. T.7ORCID,Lauer T. R.8ORCID,Porter S. B.1ORCID,White O. L.26,Buratti B. J.9ORCID,El-Maarry M. R.1011ORCID,Lisse C. M.3ORCID,Parker A. H.1ORCID,Throop H. B.12ORCID,Robbins S. J.1ORCID,Umurhan O. M.2ORCID,Binzel R. P.13ORCID,Britt D. T.14ORCID,Buie M. W.1ORCID,Cheng A. F.3ORCID,Cruikshank D. P.2ORCID,Elliott H. A.15ORCID,Gladstone G. R.15ORCID,Grundy W. M.1617ORCID,Hill M. E.3ORCID,Horanyi M.18ORCID,Jennings D. E.19,Kavelaars J. J.20ORCID,Linscott I. R.21ORCID,McComas D. J.22ORCID,McNutt R. L.3ORCID,Protopapa S.1ORCID,Reuter D. C.19,Schenk P. M.23ORCID,Showalter M. R.6ORCID,Young L. A.1ORCID,Zangari A. M.1,Abedin A. Y.20,Beddingfield C. B.6ORCID,Benecchi S. D.24ORCID,Bernardoni E.18,Bierson C. J.25ORCID,Borncamp D.26ORCID,Bray V. J.27ORCID,Chaikin A. L.28,Dhingra R. D.29ORCID,Fuentes C.30ORCID,Fuse T.31ORCID,Gay P. L24ORCID,Gwyn S. D. J.20ORCID,Hamilton D. P.32ORCID,Hofgartner J. D.9ORCID,Holman M. J.33ORCID,Howard A. D.34ORCID,Howett C. J. A.1ORCID,Karoji H.35,Kaufmann D. E.1,Kinczyk M.36ORCID,May B. H.37,Mountain M.38,Pätzold M.39,Petit J. M.40ORCID,Piquette M. R.18ORCID,Reid I. N.41ORCID,Reitsema H. J.42ORCID,Runyon K. D.3ORCID,Sheppard S. S.43ORCID,Stansberry J. A.41,Stryk T.44,Tanga P.45ORCID,Tholen D. J.46ORCID,Trilling D. E.17ORCID,Wasserman L. H.16

Affiliation:

1. Southwest Research Institute, Boulder, CO 80302, USA.

2. NASA Ames Research Center, Moffett Field, CA 94035-1000, USA.

3. Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA.

4. Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA.

5. Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA.

6. SETI Institute, Mountain View, CA 94043, USA.

7. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

8. National Science Foundation’s National Optical Infrared Astronomy Research Laboratory, Tucson, AZ 26732, USA.

9. Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109, USA.

10. Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, UK.

11. University College London, Gower St, Bloomsbury, London WC1E 6BT, UK.

12. Independent Consultant, Washington, D.C., USA.

13. Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

14. Department of Physics, University of Central Florida, Orlando, FL 32816, USA.

15. Southwest Research Institute, San Antonio, TX 78238, USA.

16. Lowell Observatory, Flagstaff, AZ 86001, USA.

17. Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, 86011, USA.

18. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA.

19. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

20. National Research Council of Canada, Victoria, BC V9E 2E7, Canada.

21. Independent Consultant, Mountain View, CA 94043, USA.

22. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA.

23. Lunar and Planetary Institute, Houston, TX 77058, USA.

24. Planetary Science Institute, Tucson, AZ 85719, USA.

25. Earth and Planetary Science Department, University of California, Santa Cruz, CA 95064, USA.

26. Decipher Technology Studios, Alexandria, VA 22314, USA.

27. Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.

28. Independent Science Writer, Arlington, VT 05250, USA.

29. University of Idaho, Moscow, ID 83844, USA.

30. Universidad de Chile, Centro de Astrofísica y Tecnologías Afines, Santiago, Chile.

31. Kashima Space Technology Center, National Institute of Information and Communications Technology, Kashima, Ibaraki 314-8501, Japan.

32. Department of Astronomy, University of Maryland, College Park, MD 20742, USA.

33. Center for Astrophysics, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA.

34. Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA.

35. National Institutes of Natural Sciences, Tokyo, Japan.

36. Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA.

37. Independent Collaborator, Windlesham GU20 6YW, UK.

38. Association of Universities for Research in Astronomy, Washington, DC 20004, USA.

39. Rheinisches Institut für Umweltforschung an der Universität zu Köln, Cologne 50931, Germany.

40. Institut Univers, Temps-fréquence, Interfaces, Nanostructures, Atmosphère et environnement, Molécules, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Universite Bourgogne Franche Comte, F-25000 Besancon, France.

41. Space Telescope Science Institute, Baltimore, MD 21218, USA.

42. Independent Consultant, Holland, MI 49424, USA.

43. Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA.

44. Roane State Community College, Oak Ridge, TN 37830, USA.

45. Université Côte d'Azur, Observatoire de la Côte d’Azur, Laboratoire Lagrange/ Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7293, 06304 Nice Cedex 4, France.

46. Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA.

Abstract

Examining Arrokoth The New Horizons spacecraft flew past the Kuiper Belt object (486958) Arrokoth (also known as 2014 MU 69 ) in January 2019. Because of the great distance to the outer Solar System and limited bandwidth, it will take until late 2020 to downlink all the spacecraft's observations back to Earth. Three papers in this issue analyze recently downlinked data, including the highest-resolution images taken during the encounter (see the Perspective by Jewitt). Spencer et al. examined Arrokoth's geology and geophysics using stereo imaging, dated the surface using impact craters, and produced a geomorphological map. Grundy et al. investigated the composition of the surface using color imaging and spectroscopic data and assessed Arrokoth's thermal emission using microwave radiometry. McKinnon et al. used simulations to determine how Arrokoth formed: Two gravitationally bound objects gently spiraled together during the formation of the Solar System. Together, these papers determine the age, composition, and formation process of the most pristine object yet visited by a spacecraft. Science , this issue p. eaay3999 , p. eaay3705 , p. eaay6620 ; see also p. 980

Funder

Southwest Research Institute

National Research Council Canada

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3