Affiliation:
1. Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA 94080.
Abstract
Hefty structures of IgA and IgM complexes
Immunoglobulin M (IgM) and IgA are antibody isotypes that can form higher-order secretory complexes (sIgM and sIgA), which allows them to effectively bind and neutralize antigens with low-affinity repetitive epitopes, such as those found on the surface of many bacteria and viruses. The assembly and transport of these molecules is also dependent on the joining chain (J-chain) and the polymeric immunoglobulin receptor (pIgR) secretory component (SC). The architecture of these complex, multimeric structures has remained elusive. Li
et al.
resolved cryo–electron microscopy structures of the sIgM-Fc pentamer in complex with the J-chain and SC. Using similar techniques, Kumar
et al.
visualized dimeric, tetrameric, and pentameric structures of secretory sIgA-Fc interacting with the J-chain and SC. Both groups report highly similar mechanisms wherein the J-chain serves as a template for antibody oligomerization. An unanticipated, amyloid-like assembly of the oligomerized structure is present in both cases, with the J-chain conferring asymmetry for pIgR binding and transcytosis. These studies may inform structure-based engineering of these molecules for future therapeutic purposes.
Science
, this issue p.
1014
, p.
1008
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献