Affiliation:
1. Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Abstract
Brittle materials fail by means of rapid cracks. Classical fracture mechanics describes the motion of tensile cracks that dissipate released elastic energy within a point-like zone at their tips. Within this framework, a “classical” tensile crack cannot exceed the Rayleigh wave speed,
c
R
. Using brittle neo-hookean materials, we experimentally demonstrate the existence of “supershear” tensile cracks that exceed shear wave speeds,
c
R
. Supershear cracks smoothly accelerate beyond
c
R
, to speeds that could approach dilatation wave speeds. Supershear dynamics are governed by different principles than those guiding “classical” cracks; this fracture mode is excited at critical (material dependent) applied strains. This nonclassical mode of tensile fracture represents a fundamental shift in our understanding of the fracture process.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献