Synthetic regulatory reconstitution reveals principles of mammalian Hox cluster regulation

Author:

Pinglay Sudarshan1ORCID,Bulajić Milica2ORCID,Rahe Dylan P.2ORCID,Huang Emily1ORCID,Brosh Ran1ORCID,Mamrak Nicholas E.1,King Benjamin R.1,German Sergei1,Cadley John A.1ORCID,Rieber Lila3,Easo Nicole1ORCID,Lionnet Timothée145ORCID,Mahony Shaun3ORCID,Maurano Matthew T.16ORCID,Holt Liam J.157ORCID,Mazzoni Esteban O.2ORCID,Boeke Jef D.157ORCID

Affiliation:

1. Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.

2. Department of Biology, New York University, New York, NY 10003, USA.

3. Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.

4. Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA.

5. Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.

6. Department of Pathology, NYU Langone Health, New York, NY 10016, USA.

7. Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.

Abstract

Precise Hox gene expression is crucial for embryonic patterning. Intra- Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce “synthetic regulatory reconstitution,” a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3