Visualizing H 2 O molecules reacting at TiO 2 active sites with transmission electron microscopy

Author:

Yuan Wentao1ORCID,Zhu Beien23ORCID,Li Xiao-Yan24,Hansen Thomas W.5ORCID,Ou Yang1ORCID,Fang Ke1ORCID,Yang Hangsheng1,Zhang Ze1ORCID,Wagner Jakob B.5ORCID,Gao Yi23ORCID,Wang Yong1ORCID

Affiliation:

1. State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China.

2. Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China.

3. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China.

4. University of Chinese Academy of Sciences, Beijing, 100049 China.

5. DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.

Abstract

Imaging reactive surface water Recent developments in transmission electron microscopy (TEM) have enabled imaging of single atoms, but adsorbed gas molecules have proven more challenging because of a lack of sufficient image contrast. Yuan et al. adsorbed water and carbon monoxide (CO) on a reconstructed nanocrystalline anatase titanium dioxide (TiO 2 ) surface that has protruding TiO 3 ridges every four unit cells, which provide regions of distinct contrast. Water adsorption on this surface during environmental TEM experiments led to the formation of twinned protrusions. These structures developed dynamic contrast as the water reacted with coexposed CO to form hydrogen and carbon dioxide. Science , this issue p. 428

Funder

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Ministry of Science and Technology of China

Zhejiang Provincial Natural Science Foundation

Youth Innovation Promotion Association CAS

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3