Extreme tensile strain states in La 0.7 Ca 0.3 MnO 3 membranes

Author:

Hong Seung Sae123ORCID,Gu Mingqiang45ORCID,Verma Manish6,Harbola Varun27ORCID,Wang Bai Yang27ORCID,Lu Di247,Vailionis Arturas89ORCID,Hikita Yasuyuki2ORCID,Pentcheva Rossitza6ORCID,Rondinelli James M.4ORCID,Hwang Harold Y.12ORCID

Affiliation:

1. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

2. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

3. Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA.

4. Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

5. Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.

6. Department of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47053 Duisburg, Germany.

7. Department of Physics, Stanford University, Stanford, CA 94305, USA.

8. Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305, USA.

9. Department of Physics, Kaunas University of Technology, LT-51368 Kaunas, Lithuania.

Abstract

Straining an oxide membrane Perovskite manganites, such as La 0.7 Ca 0.3 MnO 3 , have complex phase diagrams with many competing states. Among the knobs that can be used to control their properties are magnetic field and strain. Hong et al. placed membranes of La 0.7 Ca 0.3 MnO 3 on a flexible polymer layer (see the Perspective by Beekman). Stretching the flexible layer resulted in large strains of up to 8% on the membrane. By varying the magnitude and direction of the strain, the researchers were able to explore the phase diagram of the system and influence its magnetic and transport properties. Science , this issue p. 71 ; see also p. 32

Funder

U.S. Department of Energy

Air Force Office of Scientific Research

Army Research Office

Gordon and Betty Moore Foundation

German Science Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3