Stable quantum-correlated many-body states through engineered dissipation
Author:
Mi X.1ORCID, Michailidis A. A.2ORCID, Shabani S.1, Miao K. C.1ORCID, Klimov P. V.1, Lloyd J.2ORCID, Rosenberg E.1ORCID, Acharya R.1, Aleiner I.1, Andersen T. I.1, Ansmann M.1ORCID, Arute F.1, Arya K.1ORCID, Asfaw A.1, Atalaya J.1, Bardin J. C.13ORCID, Bengtsson A.1ORCID, Bortoli G.1, Bourassa A.1ORCID, Bovaird J.1, Brill L.1, Broughton M.1, Buckley B. B.1ORCID, Buell D. A.1, Burger T.1, Burkett B.1ORCID, Bushnell N.1ORCID, Chen Z.1, Chiaro B.1, Chik D.1, Chou C.1, Cogan J.1, Collins R.1ORCID, Conner P.1, Courtney W.1, Crook A. L.1, Curtin B.1, Dau A. G.1, Debroy D. M.1, Del Toro Barba A.1ORCID, Demura S.1ORCID, Di Paolo A.1ORCID, Drozdov I. K.1, Dunsworth A.1, Erickson C.1, Faoro L.1, Farhi E.1, Fatemi R.1, Ferreira V. S.1, Burgos L. F.1, Forati E.1, Fowler A. G.1ORCID, Foxen B.1ORCID, Genois É.1, Giang W.1, Gidney C.1, Gilboa D.1, Giustina M.1, Gosula R.1, Gross J. A.1ORCID, Habegger S.1ORCID, Hamilton M. C.14ORCID, Hansen M.1, Harrigan M. P.1ORCID, Harrington S. D.1ORCID, Heu P.1, Hoffmann M. R.1ORCID, Hong S.1, Huang T.1, Huff A.1, Huggins W. J.1, Ioffe L. B.1ORCID, Isakov S. V.1, Iveland J.1, Jeffrey E.1, Jiang Z.1ORCID, Jones C.1, Juhas P.1ORCID, Kafri D.1ORCID, Kechedzhi K.1ORCID, Khattar T.1, Khezri M.1, Kieferová M.15, Kim S.1ORCID, Kitaev A.1, Klots A. R.1, Korotkov A. N.16, Kostritsa F.1, Kreikebaum J. M.1ORCID, Landhuis D.1ORCID, Laptev P.1, Lau K.-M.1, Laws L.1, Lee J.17, Lee K. W.1ORCID, Lensky Y. D.1, Lester B. J.1ORCID, Lill A. T.1, Liu W.1, Locharla A.1ORCID, Malone F. D.1, Martin O.1ORCID, McClean J. R.1ORCID, McEwen M.1ORCID, Mieszala A.1, Montazeri S.1, Morvan A.1ORCID, Movassagh R.1ORCID, Mruczkiewicz W.1ORCID, Neeley M.1ORCID, Neill C.1ORCID, Nersisyan A.1, Newman M.1, Ng J. H.1, Nguyen A.1, Nguyen M.1, Niu M. Y.1ORCID, O’Brien T. E.1ORCID, Opremcak A.1, Petukhov A.1, Potter R.1, Pryadko L. P.18, Quintana C.1, Rocque C.1, Rubin N. C.1ORCID, Saei N.1, Sank D.1ORCID, Sankaragomathi K.1, Satzinger K. J.1ORCID, Schurkus H. F.1ORCID, Schuster C.1ORCID, Shearn M. J.1, Shorter A.1, Shutty N.1, Shvarts V.1, Skruzny J.1, Smith W. C.1, Somma R.1, Sterling G.1, Strain D.1, Szalay M.1ORCID, Torres A.1, Vidal G.1, Villalonga B.1, Heidweiller C. V.1, White T.1ORCID, Woo B. W. K.1ORCID, Xing C.1, Yao Z. J.1ORCID, Yeh P.1ORCID, Yoo J.1, Young G.1, Zalcman A.1ORCID, Zhang Y.1, Zhu N.1ORCID, Zobrist N.1ORCID, Neven H.1ORCID, Babbush R.1ORCID, Bacon D.1ORCID, Boixo S.1ORCID, Hilton J.1, Lucero E.1ORCID, Megrant A.1ORCID, Kelly J.1, Chen Y.1ORCID, Roushan P.1ORCID, Smelyanskiy V.1ORCID, Abanin D. A.129ORCID
Affiliation:
1. Google Research, Mountain View, CA, USA. 2. Department of Theoretical Physics, University of Geneva, Geneva, Switzerland. 3. Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA. 4. Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA. 5. Centre for Quantum Software and Information (QSI), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia. 6. Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA. 7. Department of Chemistry, Columbia University, New York, NY, USA. 8. Department of Physics and Astronomy, University of California, Riverside, CA, USA. 9. Department of Physics, Princeton University, Princeton, NJ, USA.
Abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|