Stable quantum-correlated many-body states through engineered dissipation

Author:

Mi X.1ORCID,Michailidis A. A.2ORCID,Shabani S.1,Miao K. C.1ORCID,Klimov P. V.1,Lloyd J.2ORCID,Rosenberg E.1ORCID,Acharya R.1,Aleiner I.1,Andersen T. I.1,Ansmann M.1ORCID,Arute F.1,Arya K.1ORCID,Asfaw A.1,Atalaya J.1,Bardin J. C.13ORCID,Bengtsson A.1ORCID,Bortoli G.1,Bourassa A.1ORCID,Bovaird J.1,Brill L.1,Broughton M.1,Buckley B. B.1ORCID,Buell D. A.1,Burger T.1,Burkett B.1ORCID,Bushnell N.1ORCID,Chen Z.1,Chiaro B.1,Chik D.1,Chou C.1,Cogan J.1,Collins R.1ORCID,Conner P.1,Courtney W.1,Crook A. L.1,Curtin B.1,Dau A. G.1,Debroy D. M.1,Del Toro Barba A.1ORCID,Demura S.1ORCID,Di Paolo A.1ORCID,Drozdov I. K.1,Dunsworth A.1,Erickson C.1,Faoro L.1,Farhi E.1,Fatemi R.1,Ferreira V. S.1,Burgos L. F.1,Forati E.1,Fowler A. G.1ORCID,Foxen B.1ORCID,Genois É.1,Giang W.1,Gidney C.1,Gilboa D.1,Giustina M.1,Gosula R.1,Gross J. A.1ORCID,Habegger S.1ORCID,Hamilton M. C.14ORCID,Hansen M.1,Harrigan M. P.1ORCID,Harrington S. D.1ORCID,Heu P.1,Hoffmann M. R.1ORCID,Hong S.1,Huang T.1,Huff A.1,Huggins W. J.1,Ioffe L. B.1ORCID,Isakov S. V.1,Iveland J.1,Jeffrey E.1,Jiang Z.1ORCID,Jones C.1,Juhas P.1ORCID,Kafri D.1ORCID,Kechedzhi K.1ORCID,Khattar T.1,Khezri M.1,Kieferová M.15,Kim S.1ORCID,Kitaev A.1,Klots A. R.1,Korotkov A. N.16,Kostritsa F.1,Kreikebaum J. M.1ORCID,Landhuis D.1ORCID,Laptev P.1,Lau K.-M.1,Laws L.1,Lee J.17,Lee K. W.1ORCID,Lensky Y. D.1,Lester B. J.1ORCID,Lill A. T.1,Liu W.1,Locharla A.1ORCID,Malone F. D.1,Martin O.1ORCID,McClean J. R.1ORCID,McEwen M.1ORCID,Mieszala A.1,Montazeri S.1,Morvan A.1ORCID,Movassagh R.1ORCID,Mruczkiewicz W.1ORCID,Neeley M.1ORCID,Neill C.1ORCID,Nersisyan A.1,Newman M.1,Ng J. H.1,Nguyen A.1,Nguyen M.1,Niu M. Y.1ORCID,O’Brien T. E.1ORCID,Opremcak A.1,Petukhov A.1,Potter R.1,Pryadko L. P.18,Quintana C.1,Rocque C.1,Rubin N. C.1ORCID,Saei N.1,Sank D.1ORCID,Sankaragomathi K.1,Satzinger K. J.1ORCID,Schurkus H. F.1ORCID,Schuster C.1ORCID,Shearn M. J.1,Shorter A.1,Shutty N.1,Shvarts V.1,Skruzny J.1,Smith W. C.1,Somma R.1,Sterling G.1,Strain D.1,Szalay M.1ORCID,Torres A.1,Vidal G.1,Villalonga B.1,Heidweiller C. V.1,White T.1ORCID,Woo B. W. K.1ORCID,Xing C.1,Yao Z. J.1ORCID,Yeh P.1ORCID,Yoo J.1,Young G.1,Zalcman A.1ORCID,Zhang Y.1,Zhu N.1ORCID,Zobrist N.1ORCID,Neven H.1ORCID,Babbush R.1ORCID,Bacon D.1ORCID,Boixo S.1ORCID,Hilton J.1,Lucero E.1ORCID,Megrant A.1ORCID,Kelly J.1,Chen Y.1ORCID,Roushan P.1ORCID,Smelyanskiy V.1ORCID,Abanin D. A.129ORCID

Affiliation:

1. Google Research, Mountain View, CA, USA.

2. Department of Theoretical Physics, University of Geneva, Geneva, Switzerland.

3. Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA.

4. Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA.

5. Centre for Quantum Software and Information (QSI), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia.

6. Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA.

7. Department of Chemistry, Columbia University, New York, NY, USA.

8. Department of Physics and Astronomy, University of California, Riverside, CA, USA.

9. Department of Physics, Princeton University, Princeton, NJ, USA.

Abstract

Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3