Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease

Author:

Theodoris Christina V.123ORCID,Zhou Ping12,Liu Lei12,Zhang Yu12,Nishino Tomohiro12ORCID,Huang Yu12,Kostina Aleksandra4ORCID,Ranade Sanjeev S.12,Gifford Casey A.12ORCID,Uspenskiy Vladimir5ORCID,Malashicheva Anna456ORCID,Ding Sheng127ORCID,Srivastava Deepak128ORCID

Affiliation:

1. Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.

2. Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA.

3. Program in Developmental and Stem Cell Biology (DSCB), University of California, San Francisco (UCSF), San Francisco, CA, USA.

4. Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia.

5. Almazov Federal Medical Research Centre, Saint Petersburg, Russia.

6. Saint Petersburg State University, Saint Petersburg, Russia.

7. Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.

8. Department of Pediatrics, Department of Biochemistry and Biophysics, UCSF, San Francisco, CA, USA.

Abstract

Machine learning for medicine Small-molecule screens aimed at identifying therapeutic candidates traditionally search for molecules that affect one to several outputs at most, limiting discovery of true disease-modifying drugs. Theodoris et al. developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell disease model of a common form of heart disease involving the aortic valve. Gene network correction by the most efficacious therapeutic candidate generalized to primary aortic valve cells derived from more than 20 patients with sporadic aortic valve disease and prevented aortic valve disease in vivo in a mouse model. Science , this issue p. eabd0724

Funder

National Institutes of Health

Damon Runyon Cancer Research Foundation

California Institute for Regenerative Medicine

Russian Science Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3