Foxg1 Suppresses Early Cortical Cell Fate

Author:

Hanashima Carina123,Li Suzanne C.123,Shen Lijian123,Lai Eseng123,Fishell Gord123

Affiliation:

1. Developmental Genetics Program and the Department of Cell Biology, The Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA.

2. Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.

3. Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA.

Abstract

During mammalian cerebral corticogenesis, progenitor cells become progressively restricted in the types of neurons they can produce. The molecular mechanism that determines earlier versus later born neuron fate is unknown. We demonstrate here that the generation of the earliest born neurons, the Cajal-Retzius cells, is suppressed by the telencephalic transcription factor Foxg1. In Foxg1 null mutants, we observed an excess of Cajal-Retzius neuron production in the cortex. By conditionally inactivating Foxg1 in cortical progenitors that normally produce deep-layer cortical neurons, we demonstrate that Foxg1 is constitutively required to suppress Cajal-Retzius cell fate. Hence, the competence to generate the earliest born neurons during later cortical development is actively suppressed but not lost.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3