Casting inorganic structures with DNA molds

Author:

Sun Wei12,Boulais Etienne3,Hakobyan Yera3,Wang Wei Li12,Guan Amy1,Bathe Mark3,Yin Peng12

Affiliation:

1. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

2. Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

3. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Introduction The ability to manufacture inorganic nanoparticles (NPs) with arbitrarily prescribed three-dimensional (3D) shapes and positional surface modifications is essential to enabling diverse applications (e.g., in nano-optics and biosensing). However, it is challenging to achieve 3D arbitrary user-specified shapes with sub–5-nm resolution. Top-down lithography has limited resolution, particularly for 3D shapes; capping ligands can be used to tune the energy difference of selected crystallographic facets, but typically only for highly symmetric shapes with identical surface facets. Rationale We developed a framework to program arbitrary 3D inorganic NPs using DNA, which serves both as an informational “genome” to encode the 3D shape of a NP and as a physical “fabricator” to retrieve the information and execute the instruction to manufacture the NP. Specifically, our method uses a computationally designed, mechanically stiff synthetic DNA nanostructure with a user-specified cavity as a “mold” to cast the target inorganic NP. The mold encloses a small gold (Au) “seed.” Under mild conditions, the Au seed grows into a larger metal NP that fills the entire cavity, thereby replicating its prescribed 3D shape. The remaining DNA mold additionally acts as a spatially programmable functionalization surface. Results Using this DNA nanocasting method, we constructed three distinct sub–25-nm 3D cuboid silver (Ag) NPs with three independently tunable dimensions. The shape versatility of DNA-based nanocasting was further demonstrated via the synthesis of Ag NPs with equilateral triangular, right triangular, and circular cross sections. The material versatility was demonstrated via synthesis of a Au cuboid in addition to the Ag NPs. The DNA mold served as an addressable coating for the casted NP and thus enabled the construction of higher-order composite structures, including a Y-shaped Ag NP composite and a quantum dot (QD)–Ag-QD sandwiched structure through one-step casting growth. We investigated the key design parameters for stiff DNA molds through mechanical simulations. Multilayered DNA molds provided higher mechanical stiffness for confining NP growth within the mold than single-layer DNA molds, as confirmed by experimental observation. We additionally characterized plasmonic properties of the designer equilateral Ag triangle and Ag sphere through electron energy loss spectroscopy. Tuning of particle symmetry produced a shape-specific spectrum, which is consistent with the predictions of electromagnetism-based simulations. Conclusion DNA nanocasting represents a new framework for the programmable digital fabrication of 3D inorganic nanostructures with prescribed shapes, dimensions, and surface modifications at sub– 5-nm resolution. The key design strategy is to encode linear sequences of DNA with the sophisticated user-specified 3D spatial and surface information of an inorganic NP, as well as to retrieve and execute the information to physically produce this structure via geometric confinement. Such a method may lead to computationally designed functional materials for the digital manufacture of optical nanocircuits, electronic nanocomputers, and perhaps even sophisticated inorganic nanorobots, each with their blueprints (or “genomes’’) encoded in the DNA molecules that constitute their “nanofabricators.”

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 268 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3