Affiliation:
1. Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
2. Centre for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
Abstract
Glia constitute roughly half of the cells of the central nervous system (CNS) but were long-considered to be static bystanders to its formation and function. Here we provide an overview of how the diverse and dynamic functions of glial cells orchestrate essentially all aspects of nervous system formation and function. Radial glia, astrocytes, oligodendrocyte progenitor cells, oligodendrocytes, and microglia each influence nervous system development, from neuronal birth, migration, axon specification, and growth through circuit assembly and synaptogenesis. As neural circuits mature, distinct glia fulfill key roles in synaptic communication, plasticity, homeostasis, and network-level activity through dynamic monitoring and alteration of CNS structure and function. Continued elucidation of glial cell biology, and the dynamic interactions of neurons and glia, will enrich our understanding of nervous system formation, health, and function.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
596 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献