Centennial changes in North Pacific anoxia linked to tropical trade winds

Author:

Deutsch Curtis1,Berelson William2,Thunell Robert3,Weber Thomas1,Tems Caitlin2,McManus James4,Crusius John5,Ito Taka6,Baumgartner Timothy7,Ferreira Vicente7,Mey Jacob89,van Geen Alexander8

Affiliation:

1. School of Oceanography, University of Washington, Seattle, WA, USA.

2. Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA.

3. Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC, USA.

4. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA.

5. U.S. Geological Survey, University of Washington School of Oceanography, Seattle, WA, USA.

6. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

7. Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México.

8. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.

9. Department of Physical Sciences, Kingsborough Community College, City University of New York, New York, NY, USA.

Abstract

Climate warming is expected to reduce oxygen (O 2 ) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ 15 N) from multiple sediment cores. Increasing δ 15 N since ~1990 records an expansion of anoxia, consistent with observed O 2 trends. However, this was preceded by a longer declining δ 15 N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O 2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O 2 decline.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3