3D organization of synthetic and scrambled chromosomes

Author:

Mercy Guillaume123ORCID,Mozziconacci Julien4,Scolari Vittore F.12ORCID,Yang Kun5ORCID,Zhao Guanghou6,Thierry Agnès12,Luo Yisha7ORCID,Mitchell Leslie A.8ORCID,Shen Michael8,Shen Yue7910ORCID,Walker Roy7ORCID,Zhang Weimin6ORCID,Wu Yi11ORCID,Xie Ze-xiong11,Luo Zhouqing6ORCID,Cai Yizhi7ORCID,Dai Junbiao6ORCID,Yang Huanming912ORCID,Yuan Ying-Jin11ORCID,Boeke Jef D.8ORCID,Bader Joel S.5ORCID,Muller Héloïse12ORCID,Koszul Romain12ORCID

Affiliation:

1. Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France.

2. UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France.

3. Sorbonne Universités, Université Pierre et Marie Curie (Université Paris 6), Paris 75005, France.

4. Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR7600, Université Pierre et Marie Curie (Université Paris 6), Sorbonne Universités, Paris, France.

5. Department of Biomedical Engineering and High-Throughput Biology Center, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

6. Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.

7. School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.

8. Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY 10016, USA.

9. BGI-Shenzhen, Shenzhen 518083, China.

10. BGI-Qingdao, Qingdao 266555, China.

11. Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

12. James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.

Abstract

INTRODUCTION The overall organization of budding yeast chromosomes is driven and regulated by four factors: (i) the tethering and clustering of centromeres at the spindle pole body; (ii) the loose tethering of telomeres at the nuclear envelope, where they form small, dynamic clusters; (iii) a single nucleolus in which the ribosomal DNA (rDNA) cluster is sequestered from other chromosomes; and (iv) chromosomal arm lengths. Hi-C, a genomic derivative of the chromosome conformation capture approach, quantifies the proximity of all DNA segments present in the nuclei of a cell population, unveiling the average multiscale organization of chromosomes in the nuclear space. We exploited Hi-C to investigate the trajectories of synthetic chromosomes within the Saccharomyces cerevisiae nucleus and compare them with their native counterparts. RATIONALE The Sc2.0 genome design specifies strong conservation of gene content and arrangement with respect to the native chromosomal sequence. However, synthetic chromosomes incorporate thousands of designer changes, notably the removal of transfer RNA genes and repeated sequences such as transposons and subtelomeric repeats to enhance stability. They also carry loxPsym sites, allowing for inducible genome SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution) aimed at accelerating genomic plasticity. Whether these changes affect chromosome organization, DNA metabolism, and fitness is a critical question for completion of the Sc2.0 project. To address these questions, we used Hi-C to characterize the organization of synthetic chromosomes. RESULTS Comparison of synthetic chromosomes with native counterparts revealed no substantial changes, showing that the redesigned sequences, and especially the removal of repeated sequences, had little or no effect on average chromosome trajectories. Sc2.0 synthetic chromosomes have Hi-C contact maps with much smoother contact patterns than those of native chromosomes, especially in subtelomeric regions. This improved “mappability” results directly from the removal of repeated elements all along the length of the synthetic chromosomes. These observations highlight a conceptual advance enabled by bottom-up chromosome synthesis, which allows refinement of experimental systems to make complex questions easier to address. Despite the overall similarity, differences were observed in two instances. First, deletion of the HML and HMR silent mating-type cassettes on chromosome III led to a loss of their specific interaction. Second, repositioning the large array of rDNA repeats nearer to the centromere cluster forced substantial genome-wide conformational changes—for instance, inserting the array in the middle of the small right arm of chromosome III split the arm into two noninteracting regions. The nucleolus structure was then trapped in the middle between small and large chromosome arms, imposing a physical barrier between them. In addition to describing the Sc2.0 chromosome organization, we also used Hi-C to identify chromosomal rearrangements resulting from SCRaMbLE experiments. Inducible recombination between the hundreds of loxPsym sites introduced into Sc2.0 chromosomes enables combinatorial rearrangements of the genome structure. Hi-C contact maps of two SCRaMbLE strains carrying synIII and synIXR chromosomes revealed a variety of cis events, including simple deletions, inversions, and duplications, as well as translocations, the latter event representing a class of trans SCRaMbLE rearrangements not previously observed. CONCLUSION This large data set is a resource that will be exploited in future studies exploring the power of the SCRaMbLE system. By investigating the trajectories of Sc2.0 chromosomes in the nuclear space, this work paves the way for future studies addressing the influence of genome-wide engineering approaches on essential features of living systems. Synthetic chromosome organization. ( A ) Hi-C contact maps of synII and native (wild-type, WT) chromosome II. Red arrowheads point to filtered bins (white vectors) that are only present in the native chromosome map. kb, kilobases. ( B ) Three-dimensional (3D) representations of Hi-C maps of strains carrying rDNA either on synXII or native chromosome III. ( C ) Contact maps and 3D representations of synIXR (yellow) and synIII (pink) before (left) and after (right) SCRaMbLE . Translocation breakpoints are indicated by green and blue arrowheads.

Funder

National Science Foundation

European Research Council

Agence Nationale de la Recherche

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3