Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing

Author:

Nakatsuka Nako12ORCID,Yang Kyung-Ae3ORCID,Abendroth John M.12ORCID,Cheung Kevin M.12ORCID,Xu Xiaobin12ORCID,Yang Hongyan4,Zhao Chuanzhen12ORCID,Zhu Bowen15ORCID,Rim You Seung15ORCID,Yang Yang15ORCID,Weiss Paul S.125ORCID,Stojanović Milan N.36ORCID,Andrews Anne M.124ORCID

Affiliation:

1. California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.

2. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

3. Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, NY 10032, USA.

4. Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, CA 90095, USA.

5. Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.

6. Departments of Biomedical Engineering and Systems Biology, Columbia University, New York, NY 10032, USA.

Abstract

Transistor sensing in salt solutions Molecular binding to receptors on the surface of field-effect transistors (FETs) can be sensed through changes in transconductance. However, the saline solutions typically used with biomolecules create an electrical double layer that masks any events that occur within about 1 nanometer from the surface. Nakatsuka et al. overcame this limitation by using binding to large, negatively charged DNA stem loop structures that, upon ligand binding, cause conformational changes that can be sensed with an FET, even in solutions with high ionic strength. The authors demonstrate the sensing of charged molecules such as dopamine in artificial cerebrospinal fluid as well as neutral molecules such as glucose and zwitterion molecules like sphingosine-1-phosphate. Science , this issue p. 319

Funder

National Science Foundation

National Institutes of Health

Cal-BRAIN

National Cancer Institute

National Institute of Diabetes and Digestive and Kidney Diseases

Hewlett Packard

Nantworks

Merkin Family Foundation

China Scholarship Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3