Abstract
Group formation in living systems typically results from a delicate balance of repulsive, aligning, and attractive interactions. We found that a mere motility change of the individuals in response to the visual perception of their peers induces group formation and cohesion. We tested this principle in a real system of active particles whose motilities are controlled by an external feedback loop. For narrow fields of view, individuals gathered into cohesive nonpolarized groups without requiring active reorientations. For wider fields of view, cohesion could be achieved by lowering the response threshold. We expect this motility-induced cohesion mechanism to be relevant not only for the self-organization of living systems, but also for the design of robust and scalable autonomous systems.
Funder
European Research Council
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
184 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献