Fast fabrication of a hierarchical nanostructured multifunctional ferromagnet

Author:

Hua Yingxin1ORCID,Li Xiaohong1,Li Jiaxu2,Luo Xiang2ORCID,Li Yuqing3,Qin Wenyue1,Zhang Liqiang1ORCID,Xiao Jianwei4ORCID,Xia Weixing5ORCID,Song Ping1ORCID,Yue Ming3,Zhang Hai-Tian2ORCID,Zhang Xiangyi1ORCID

Affiliation:

1. Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.

2. School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

3. Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China.

4. Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.

5. CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Abstract

Materials with multifunctionality affect society enormously. However, the inability to surmount multiple functionality trade-offs limits the discovery of next-generation multifunctional materials. Departing from conventional alloying design philosophy, we present a hierarchical nanostructure (HNS) strategy to simultaneously break multiple performance trade-offs in a material. Using a praseodymium-cobalt (PrCo 5 ) ferromagnet as a proof of concept, the resulting HNS outperforms contemporary high-temperature ferromagnets with a 50 to 138% increase in electrical resistivity while achieving their highest energy density. Our strategy also enables an exceptional thermal stability of coercivity (−0.148%/°C)—a key characteristic for device accuracy and reliability—surpassing that of existing commercial rare-earth magnets. The multifunctionality stems from the deliberately introduced nanohierarchical structure, which activates multiple micromechanisms to resist domain wall movement and electron transport, offering an advanced design concept for multifunctional materials.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3