Long-term climate forcing by atmospheric oxygen concentrations

Author:

Poulsen Christopher J.1,Tabor Clay1,White Joseph D.2

Affiliation:

1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

2. Department of Biology, Baylor University, Waco, TX 76798, USA.

Abstract

Change was in the air The atmospheric fraction of molecular oxygen gas, O 2 , currently at 21%, is thought to have varied between around 35 and 15% over the past 500 million years. Because O 2 is not a greenhouse gas, often this variability has not been considered in studies of climate change. Poulson and Wright show that indirect effects of oxygen abundance, caused by contributions to atmospheric pressure and mean molecular weight, can affect precipitation and atmospheric humidity (see the Perspective by Peppe and Royer). These effects may thus have produced significant changes in the strength of greenhouse forcing by water vapor, surface air temperatures, and the hydrological cycle in the geological past. Science , this issue p. 1238 ; see also p. 1210

Funder

NSF Sedimentary Geology and Paleobiology Program

NSF Marine Geology and Geophysics

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3