Human-level performance in 3D multiplayer games with population-based reinforcement learning

Author:

Jaderberg Max1ORCID,Czarnecki Wojciech M.1ORCID,Dunning Iain1ORCID,Marris Luke1,Lever Guy1ORCID,Castañeda Antonio Garcia1ORCID,Beattie Charles1ORCID,Rabinowitz Neil C.1,Morcos Ari S.1ORCID,Ruderman Avraham1ORCID,Sonnerat Nicolas1,Green Tim1ORCID,Deason Louise1ORCID,Leibo Joel Z.1ORCID,Silver David1,Hassabis Demis1,Kavukcuoglu Koray1,Graepel Thore1ORCID

Affiliation:

1. DeepMind, London, UK.

Abstract

Artificial teamwork Artificially intelligent agents are getting better and better at two-player games, but most real-world endeavors require teamwork. Jaderberg et al. designed a computer program that excels at playing the video game Quake III Arena in Capture the Flag mode, where two multiplayer teams compete in capturing the flags of the opposing team. The agents were trained by playing thousands of games, gradually learning successful strategies not unlike those favored by their human counterparts. Computer agents competed successfully against humans even when their reaction times were slowed to match those of humans. Science , this issue p. 859

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference82 articles.

1. Human-level control through deep reinforcement learning

2. V. Mnih et al . Proc. Int. Conf. Mach. Learn. 48 pp. 1928–1937 (2016).

3. J. Schulman F. Wolski P. Dhariwal A. Radford O. Klimov Proximal policy optimization algorithms. arXiv:1707.06347 [cs.LG] (2017).

4. T. P. Lillicrap et al . Continuous control with deep reinforcement learning. Proc. Int. Conf. Learn. Rep . (2016).

5. M. Jaderberg et al . Reinforcement learning with unsupervised auxiliary tasks. Proc. Int. Conf. Learn. Rep . (2017).

Cited by 325 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3