High-Throughput Sequencing of the Zebrafish Antibody Repertoire

Author:

Weinstein Joshua A.1,Jiang Ning2,White Richard A.3,Fisher Daniel S.145,Quake Stephen R.1234

Affiliation:

1. Biophysics Program, Stanford University, Stanford, CA 94305, USA.

2. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

3. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

4. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

5. Department of Biology, Stanford University, Stanford, CA 94305, USA.

Abstract

Antibody Repertoire Revealed Antibodies produced by B cells protect us against infection by a wide array of pathogens. Such wide-ranging responses are possible because the specific domain of the antibody that binds to the invader is highly variable owing to the somatic recombination of an inherited set of gene segments that encode the antibody molecule. Although antibody diversity within an individual organism is well-established, the specific antibody repertoire of an individual organism has not been characterized. Using high-throughput sequencing technology, Weinstein et al. (p. 807 ) characterized the diversity of the antigen-binding domain of the antibody heavy chain in zebrafish. The antibody repertoire of individual fish covered at least 50% of the possible gene combinations. Although the specific gene combinations differed between fish, a similar frequency distribution of the repertoire was observed. Unexpected examples of evolutionary conversion were also seen, with the same antibody observed in different animals.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3