Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators

Author:

Buhr Ethan D.12,Yoo Seung-Hee123,Takahashi Joseph S.1234

Affiliation:

1. Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208–3520, USA.

2. Center for Functional Genomics, Northwestern University, Evanston, IL 60208–3520, USA.

3. Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390–9111, USA.

4. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390–9111, USA

Abstract

Time and Temperature Daily cycles in environmental temperature are an important cue for many organisms to synchronize their endogenous circadian clock. However, mammals do not respond to this cue. Studying mouse tissue, Buhr et al. (p. 379 ; see the Perspective by Edery ) find that this resistance to temperature is a feature specific to the suprachiasmatic nucleus (SCN), a region of the mammalian brain that functions as the body's master clock. In contrast, the clocks in peripheral tissues (for example, lung, liver) are fully capable of resetting in response to temperature changes and do so by a mechanism involving the heat shock pathway. The SCN drives daily rhythms in body temperature, and SCN-driven changes in temperature may synchronize the body's peripheral clocks. Without its intrinsic resistance to temperature, the SCN could be subject to disruptive feedback effects.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3