Expanding the space of protein geometries by computational design of de novo fold families

Author:

Pan Xingjie12ORCID,Thompson Michael C.1ORCID,Zhang Yang1ORCID,Liu Lin1ORCID,Fraser James S.13ORCID,Kelly Mark J. S.4ORCID,Kortemme Tanja1235ORCID

Affiliation:

1. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.

2. UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA, USA.

3. Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.

4. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.

5. Chan Zuckerberg Biohub, San Francisco, CA, USA.

Abstract

Exploring the design landscape Protein design typically selects a protein topology and then identifies the geometries (secondary-structure lengths and orientations) that give the most stable structures. A challenge for this approach is that functional sites in natural proteins often adopt nonideal geometries. Pan et al. addressed this issue by exploring the diversity of geometries that can be sampled by a given topology. They developed a computational method called LUCS that systematically samples geometric variation in loop-helix-loop elements and applied it to two different topologies. This method generated families of well-folded proteins that include structures with non-native geometries. The ability to tune protein geometry may enable the custom design of new functions. Science , this issue p. 1132

Funder

National Science Foundation

National Institute of General Medical Sciences

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3